

Examples of NbS versus traditional (grey) infrastructure solutions

Scott Baker National Research Council Canada

CEC 2022 Workshop 2A | May 18 Retrofitting Existing Infrastructure Using NbS

🕽 🛑 🛑 NRC.CANADA.CA

National Research Conseil national de Council Canada recherches Canada

CASE STUDY #1

Hybrid Dyke-Marsh Systems

Project Background

Many Canadian coastal communities and shorelines are vulnerable to flooding and erosion

Opportunity to better understand risks and to adapt (be strategic, build back better, leverage co-benefits)

NbS remain underutilized in Canada

• Uncertainty surrounding their performance during storms and extreme weather events

Research Study

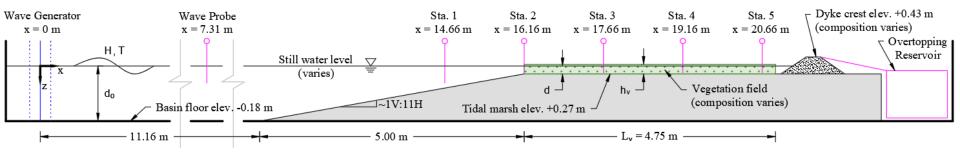
Tidal salt marsh platforms are common across Atlantic Canada coastlines

Considerable interest in exploring marsh restoration and managed dyke realignment solutions \rightarrow improved understanding of marsh-dyke systems needed

Series of 1:20 scaled laboratory experiments were conducted:

- To investigate the role of coastal salt marshes as part of nature-based shore protection systems
- To determine the effectiveness of marsh vegetation in dissipating wave energy, attenuating wave overtopping and reducing flooding for a range of environmental conditions representative of Canadian coastal regions

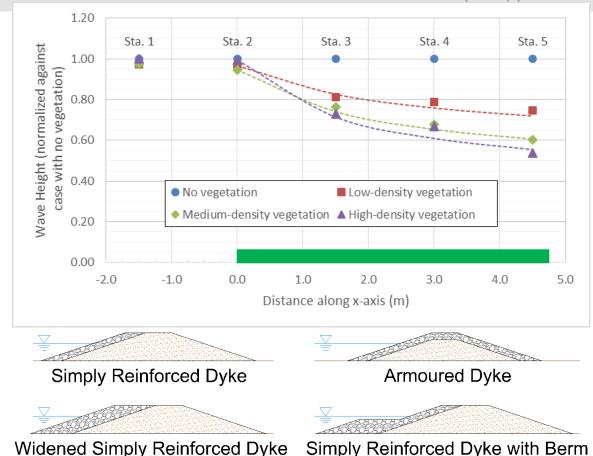
Laboratory Experiments


Parallel flumes including sloping foreshore, vegetation field & dyke

Idealized surrogate vegetation: wooden dowels & flexible tubing

Plant spacing densities: 125, 295, 450 stems/m²

Varied dyke designs, water levels & wave conditions



Assessment of Marsh-Dyke System Performance

Wave heights at the dyke toe attenuated by nearly 50% in the presence of high-density vegetation

- Significant reduction in damage to the dyke
- 10-fold reduction in wave overtopping discharge

Most wave damping occurs in the seaward portion of the marsh, regardless of vegetation density

CASE STUDY #2

The Living Breakwaters project

NATIONAL RESEARCH COUNCIL CANADA

Project Background

Tottenville area of Staten Island, ~19 miles (30.5km) from NYC

- Experienced significant damage during Hurricane Sandy (2012)
- · Caused loss of life and significant harm to the local economy
- June 2013 "Rebuild by Design" competition was launched

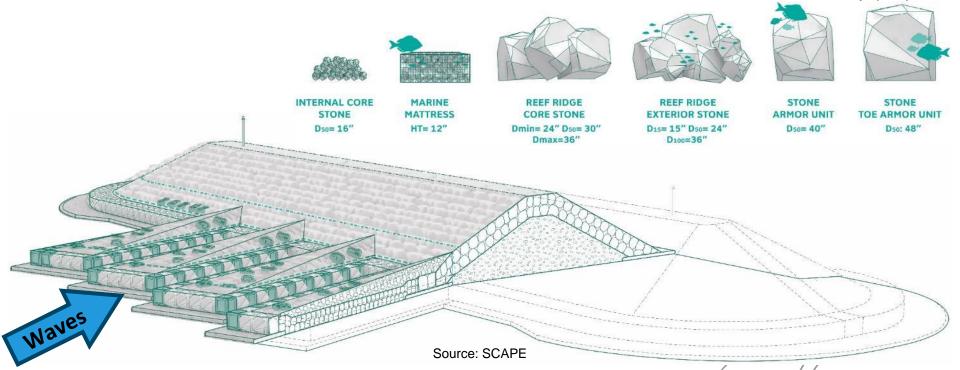
Living Breakwaters – Project Concept

Tottenville

1.25mi (2km

Navigation Channel

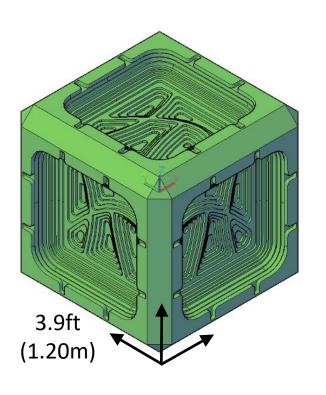
> Raritan Bay

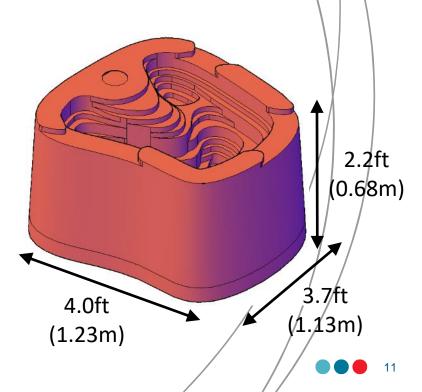

Living Breakwaters

Source: SCAPE

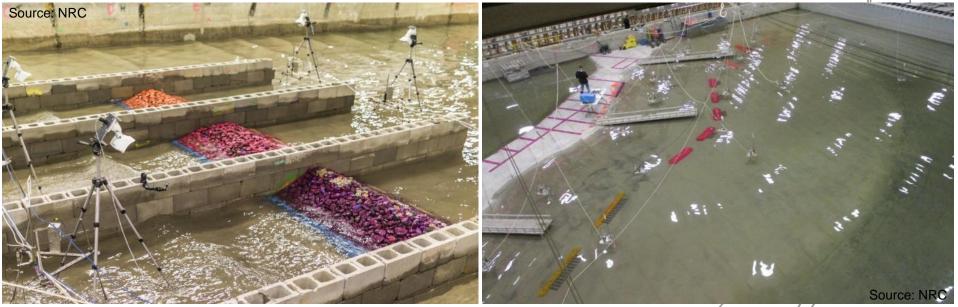
Living Breakwaters – Conceptual Design

Linear trunk section with two roundheads (conventional breakwater)


Several ocean-facing "reef ridges" and "reef streets"


Living Breakwaters – Conceptual Design

Source: SeArc


ECOncrete[®] Armour Unit

Two Physical Modelling Studies

Study objectives:

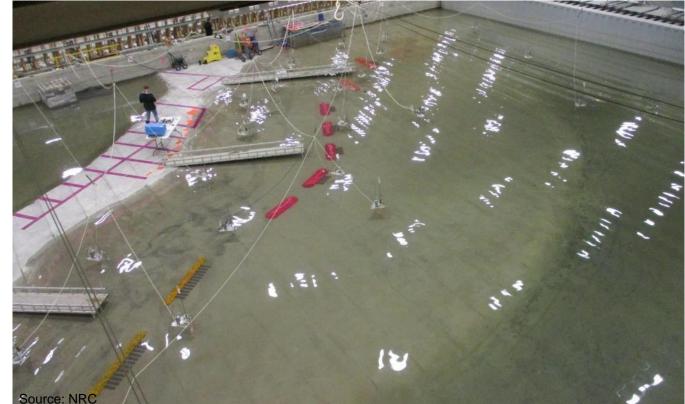
- Confirm and refine initial breakwater design and layout
- Determine wave transmission characteristics
- Determine flow characteristics around the reef ridge features for ecological design

Breakwater Stability Model

- 1:20 scale physical model to evaluate breakwater stability (2D and 3D)
- Stone materials and gradations to replicate the proposed prototype materials
- Photographic damage analysis system used to monitor performance

Breakwater Stability Model

Stability of proposed cross-sections was confirmed under design and overload conditions


Several recommendations made regarding prototype placement requirements for the bio-enhancing concrete units

Breakwater System Layout Model

1:80 scale 3D physical model to validate the overall system performance

- Assessed over a wide range of conditions
- Optimization of breakwater lengths and alignments
- Result: significant nearshore wave attenuation

Living Breakwaters – Implementation Source: SCAPE

Physical modelling study generated valuable information to support the final design

Demonstrated performance of innovative features that have potential for retrofit applications to improve ecological performance

Next Steps

Live plants

Source: NRC CFD Source: NRC

Woody debris

Living research & physical

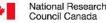
Source: Jessica Wilson Cobble beaches Source: NRC Source: Acacia Markov Surrogates 20-

NRC.CANADA.CA • 🛅 🕑 🎯

Climate-Resilient Buildings and Core Public Infrastructure Initiative

Canadian Safety and Security Program

Nature-Based Infrastructure for **Coastal Resilience & Risk Reduction**



Thank you!

scott.baker@nrc-cnrc.gc.ca

