

Tidal Wetland Ecosystem Services

Sea Level-Driven C Sequestration Capacity

Annual Rate of Carbon Storage

Blue Carbon Pools

Figure 2. Global averages for carbon pools (soil organic carbon and living biomass) of focal coastal habitats.

Threats to Blue Carbon Ecosystems

Carbon Losses from Blue Carbon Ecosystems

Table 1. Estimates of carbon released by land-use change in coastal ecosystems globally and associated economic impact.

	Inputs			Results	
Ecosystem	Global extent (Mha)	Current conversion rate (% yr ⁻¹)	Near-surface carbon susceptible (top meter sediment+biomass, Mg CO ₂ ha ⁻¹)	Carbon emissions (Pg CO ₂ yr ⁻¹)	Economic cost (Billion US\$ yr ⁻¹)
Tidal Marsh	2.2-40 (5.1)	1.0-2.0 (1.5)	237-949 (593)	0.02-0.24 (0.06)	0.64-9.7 (2.6)
Mangroves	13.8-15.2 (14.5)	0.7-3.0 (1.9)	373-1492 (933)	0.09-0.45 (0.24)	3.6-18.5 (9.8)
Seagrass	17.7-60 (30)	0.4-2.6 (1.5)	131-522 (326)	0.05-0.33 (0.15)	1.9-13.7 (6.1)
Total	33.7-115.2 (48.9)			0.15-1.02 (0.45)	6.1-41.9 (18.5)
			-3-/	1	
					E CONTRACTOR OF THE PARTY OF TH
		12		_	Seag
					Salt N

5,000

Mangroves

Figure 13: Geographic Distribution of Estimates of Carbon Storage in Salt Marsh Sediments

CEC. 2013. North American Blue Carbon Scoping Study.

Challenges to Carbon Accounting

METHODOLOGY: VCS Version 3

METHODOLOGY FOR TIDAL WETLAND AND SEAGRASS RESTORATION

Title	Methodology for Tidal Wetland and Seagrass Restoration
Version	2013-1205
Date of Issue	27 January 2014
Туре	Methodology
Sectoral Scope	14. Agriculture Forestry and Other Land Use (AFOLU) Project category: ARR + RWE
Prepared By	Silvestrum, University of Maryland, Restore America's Estuaries, Dr. Stephen Crooks, Smithsonian Environmental Research Center, Chesapeake Bay Foundation, University of Virginia

Radiative Forcing by CH₄ and N₂O

Problem #1: CH₄ and N₂O Emissions

Poffenberger, Needelman & Megonigal (2011)

Problem #3: Stability Against Sea Level Rise

Thank You

