Equinox Energy 2030: A technological roadmap for a low carbon electrified future

Prof. Jatin Nathwani

Ontario Research Chair in Public Policy for Sustainable Energy Executive Director, Waterloo Institute for Sustainable Energy University of Waterloo, Waterloo, ON

Keynote Presentation at the Joint Public Advisory Committee (JPAC) Meeting "Powering a Low-carbon Economy for 2030 and Beyond," Commission for Environmental Co-operation (CEC), NAFTA. Toronto, ON April 18, 2012

Today's Goals

Challenges

A View of Global Energy Transitions

Innovation

Promise of scientific and technology innovation

Bring coherence to a complex problem

Offer fresh thinking

Lack of Affordable Energy: What does it mean?

Energy's link to human development

- $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$
- Productivity National Income Health Education Social Development

Population Growth, Energy, Income

Global population divided into income groups:

Population rise to 9 billion + by 2050, mainly in poorest and developing countries.

Shifting the development profile to a "low poverty" world means energy needs double by 2050

Shifting the development profile further to a "developed" world means energy needs triple by 2050

Magnitude of change required for CO2 stabilization

Energy Transitions and the Global Challenge

Today's Global Energy Consumption: 16.5 TW

- of which 2.5 TW is non-carbon (mainly hydro, nuclear..)

- By 2050: **30 TW**
 - Likely higher (31- 40 TW)
- By 2050: **15 TW** of new non carbon
 - Equal to 6 x today's renewable global capacity

If goal is to stabilize global emissions profile to 550 ppm GHG emissions, approx 50% of Global Energy Demand must be non- carbon forms of energy

All new growth to be met by non-carbon sources

The Equinox Process: Global Thinking

Equinox Summit: Energy 2030

Young Future Leaders

Global Thinking

Generation	 Solar/Wind Geothermal Nuclear 		
Distribution	SuperconductorsSmart Grids		
Storage	IndustrialConsumer		

Societal Needs

- De-carbonization
- Efficiency
- Access
- Security
- Affordability

Guiding the discussion: A model of the

global electricity landscape

		RURAL REMOTE	URBAN/INDUSTRIAL	ELECTRIFIED/ TRANSPORTATION
GENERATION	Solar	1	✓	1
	Geothermal	1	✓	1
	Nuclear		✓	1
DISTRIBUTION	Superconductors		1	1
	Smart grids		1	1
STORAGE	Industrial	1	✓	1
	Consumer	1	✓	1

How are transformative technologies integrated into this model?

Low-Carbon Electricity Ecosystem

LARGE-SCALE STORAGE FOR RENEWABLE ENERGY

Land use can be benign

Or, Not so Benign

CO₂ and NO_x from natural gas that fills in

Energy Storage for the Future Grid

Future Grid

- Reliable and stable output
- Storage critical for increased compatibility of renewable energy to the grid.

Large scale storage for renewable energy

Flow batteries as an illustrative example of electrochemical batteries in grid application

Figure 2: A 1-10 kW hVRB installed by UNSW in a Solar Demonstration House in Thailand in the mid-1990s (top) and 5kW hVRB lab test battery (bottom).

Figure 4:200 kW/800 kW h VRB installation at the Kashima-Kita Electric Power station in Japan (installed in the mid-1990s).

Large scale storage for renewable energy

How flow batteries work: one common electrolyte, simplicity of electrode reaction, and flexibility for stationary energy storage

Large scale storage for renewable energy

Characteristic times for energy storage and cost benefit

Implementation: Large scale storage

 Regions with high intermittent renewable energy production

 Policymakers and electrical utilities to coordinate regulatory framework

 Private sector to build
 <u>20energy storage</u> Establish a thriving market in energy storage through deploying to a global scale

The Krafla geothermal power plant in Iceland produces 60 MW of energy. Iceland's five major geothermal power plants produced approximately 26.2% of the nation's energy in 2010.

ENHANCED GEOTHERMAL POVE

Low Emission Baseload Power

GEOPOWER

Enhanced Geothermal Power Geothermal technologies

- Enhanced Geothermal Systems (EGS)
- Co-produced systems
- Advanced binarycycle plants

Enhanced Geothermal Power

Challenges for EGS

- Large upfront capital cost for drilling projects
- Lack of access to private sector capital to undertake high-risk capital intensive projects
- Lack of long-term investment incentives such as a price on carbon
- Lack of proof of resource for many geothermal prospects
- Lack of technically and commercially proven projects

Geothermal Power Potential

- Currently 10 GW, potential is 10% baseload by 2030
- A number of working projects globally, advancing different technologies (HAS, EGS, Co-produced, Hydrothermal)
- Several large demo projects to <u>deliver certainty and</u> <u>confidence</u>
- Canada can take a leadership role in advancing geopower to the terawatt scale

ENVIRONMENTAL TECHNOLOGIES **Geotherstal Energy**

Energy from the Earth Clean Power from the Deep

Practically andless energy potential lies in the depths of the Earth: heat, stored within the rock. Drilling technology from Germany makes geothermal energy economically feasible

By Rainer Stumpf

First you leave the autobahn, drive a few kilometres down a country road and turn sharp right at the small sign with the blue GFZ logo. The journey then continues down a bumpy diet track for almost 400 metres, past the trucks at the gravel pit, and finally the white top of the drilling derrick becomes visible over the tops of the trees. On 19 February, more than 100 geologists, engineers and energy experts from all over Europe took this route from Munich to the tiny village of Dürrnhaar in order to gain nothing less than an exclusive insight into the future of geothermal energy. It bears the sumewhat unwieldy name of InnovaRig, is nearby 52 metres tall and, with a 2,700-horsepower drive unit, is powerful enough to drill up to 5,000 metres into the ground. The operators do not aim to extract oil or gas, but are instead raising a very special treasure: hot water. From the end of 2008 this nameal resource should be driving a cient demand in the immediate vicinity.

taneously generate both electricity and heat - around the clock and independently of the wind and the sun. The drilling installation in Dürrnhaar is unique. In collaboration with the Herrenknecht tunneldrilling specialists, the German Research Centre for Geosciences (GFZ) in Potsdam has developed a deep drilling system packed full of innovations. On this sunny February day the guests stand crowded together in the Bavarian countryside stretching their heads in the direction of the derrick. Yet there is no sound and no smell. That is precisely what makes InnovaRig so unique, says Martin Herrenknecht, CEO of the business of the same name: "The installation operates waste-free and so silently that it can even be used in populated areas." That is an important advantage for geothermal energy, because its use is only economically viable where there is suffifive megastatt power plant that will simul- The assembly of the drills is carried out

fully automatically, various drilling techniques can be used - as required - and this "technological masterpiece", as Herrenknecht puts it, can drill up to 100 metres a day. The expert onlookers nod appreciatively and busily take notes. By the summer, 150 litres of water per second will be flowing to the surface at a temperature of 140 degrees Celsius.

The CEO saves the best until last: "When we reach the water, we will realign the system six metres to drill a second hole." Enthusiastic applause. After all, that's never been done before either. Extracting geothermal energy always requires the drilling of two holes: the hotwater is pumped out of one hole, the heat is used to produce energy and the cooled water is pumped back into the hot rock formation through a second hole. This used to be an expensive business because the drill had to be dismantled and reassembled at another position - not any more. Using the mobile

54 - Dateschlavel 212008

Implementation: Enhanced Geothermal Technologies

Convene International stakeholders

- Information sharing;
- assess opportunities;
- de-risk industry
- "Ten Enhanced Geothermal Projects' is timely and relevant.
 - Initial funding and global working structure
 - Develop program strategy moving forward

ADVANCED NUCLEAR POWER

Challenging your assumptions about nuclear

Advanced Nuclear Power

Why nuclear?

- Proven capacity to deliver on a large scale
- Build on existing technological base
- Closing the fuel cycle: eliminate waste, improved safety, near inexhaustible resource
- Transition from fossil fuels without Advanced Nuclear Technologies?

Advanced nuclear fuel cycle concepts

Advanced Nuclear Power

Comparing three nuclear fuel cycles

Three major approaches to burning nuclear fuel and handling its wastes can be employed; some of their features are noted below.

Fuel is burned in thermal reactors and is not reprocessed; occurs in the U.S.

Fuel is burned in thermal reactors, after which plutonium is extracted using what is called PUREX processing; occurs in other developed nations Recycled fuel prepared by pyrometallurgical processing would be burned in advanced fastneutron reactors; prototype technology

CANDU High Fuel Efficiency & Flexibility

CANDU Fuel-Capability Uniqueness:

- Lowest uranium consumption/unit of energy supplied
- CANDU can utilize:
 - > Natural uranium
 - Enriched uranium
 - Recovered uranium
 - > Mixed oxides
 - > Thorium
 - > Actinide waste

Advanced Nuclear Power

Next generation designs

- Integral Fast Reactors:
 - allow the nuclear fuel cycle to be closed
 - 'burn' most the nuclear fuel waste
 - turn waste liability into an asset

Thorium Accelerator-Driven System:
 sub-critical fission through the constant introduction of fast neutrons into the reactor core

Advanced Nuclear Power

Challenges for implementation

- Proliferation and safety
- Skepticism
- Difficulty to assess the trade-offs between benefits and risks
- Industry inertia
- Political stalemate: but China and India are plowing ahead

The path towards sustainability

OFF-GRID ELECTRICITY ACCESS

Electricity Access for All

2.5 billion energy-poor people

Plastic Organic PV with Magnesium batteries

Off-Grid Electricity Access

Organic Photovoltaics (OPV) as an illustrative

- PV technologies in development and emerging next-generation nanotechnology concepts
- They in turn are a part of a larger system with the potential to be integrated within smart micro-grids, along other local renewable resources

The thin film family: amorphous silicon, copper indium gallium diselenide (CIGS), cadmium telluride (CdTe), organic thin films and dye-sensitised integrated photovoltaic

Off-Grid Electricity Access

Figure 7: Organic Photovoltaics concept developed by U.S. National Renewable Energy Laboratory.⁹ Antireflection coating Grid contact Transparent conducting oxide Junction former Absorber Rear contact OPV has the potential to become one of the lowest- cost thin-film alternatives to the currently dominant silicon photovoltaic technology, due to their potential for low-cost, high-speed processing

The context

Low WTP : High kWh use High WTP : Low kWh use

High WTP, Low kWh

2.5 billion people without electricity (500 million households)
@\$200/system, \$100B
Cost of systems being purchased now in Haiti

Low Cost Innovations: <u>Critical Pathways for Human Development Goals</u>

Flexible, Portable, Light-weight and Resilient. Attractive Price.

Solutions

		Plastic PV + Battery	Solar- Thermal	Solar- Hydrogen	Biogas/ Biomas s	Wind + Battery
E n e r g y	Lighting					
	Communicati on Tools					
i n t e n s i t y	Refrigeration					
	TV					
	Small Businesses					
	Cooking					
	Water- heating					

Off-Grid Electricity Access

Beyond OPV: Micro-grids

2030 > 500,000,000 households

Medium WTP, Medium kWh

Replace Si based PV in applications such as:

- Water pumps
- Refugee camps
- Military forward bases (\$ > 100+/gallon delivered diesel)
- Distributed sensors (rugged for deployment)

Realistic Partnership Potential

Business/ Industry	Civil Society	Government	International Organizations
	7777		UNFCCC (NAMAs)
	UNHCR Red		
	t		
			Development Banks
Digicel			

Timelines

Implementation: Off-Grid Electricity Access

Near-term

- Identify partners, align finances
- R&D, efficiency increases in Organic Photovoltaics

Within 5 Years

- Finances in place/business models developed
- Policy framework and incentives in place
- Societal acceptance and scale-up of production

Within 20 years

- Expansion of market
- next-generation Organic Photovoltaics

SMART URBANISATION

and a statement

Chicago City Hall Green Roof.

Rapid Urban Population Growth = Increasing Mobility Needs

Jakarta, Indonesia

Shanghai, China

Emerging Innovations

Enabling Technology

Refuelable Electric Buses

- Redox Flow Batteries are only batteries that allow BOTH electrical recharge and "instant" recharge by mechanical refueling
- Spent solutions can be recharged overnight with off-peak power
- Eliminates need for new power stations to meet increased load from electric cars

Buildings

 6 Billion people in urban centres by 2025

 Buildings emit 7.5 Gt CO2 or equivalent 1.5 billion cars

 Need an intelligent infrastructure that can accommodate renewable energy solutions:

- Matching load with renewable energy availability
- Electrification of transportation

Knowledge is literally power

- Ability to influence future construction & design
- Ability to influence behaviour now

The growth of the electrification of transportation and the expansion of ICT will add stresses on the existing electricity distribution and supply infrastructure

CAPACITY

Electric power concentrated in cities and suburbs 33% of power used in top 22 metro areas urban power bottleneck

2030 50% demand growth (US) 100% demand growth (world)

RELIABILITY POWER QUALITY

Average power loss/customer (min/year) US 214 53 France 6 Japan \$26.3 billion \$52.3 billion Sustained Momentary interruptions 33% interruptions 66% **US\$79 BILLION** ECONOMIC LOSS

RENEWABLE GENERATION

Long distance electricity transmission storing electrical energy

Set of challenges in electricity transmission and distribution

Superconductors offer opportunities to dramatically increase the capacity and efficiency of power transmission with a much lower physical

foo

Superconductors: smart, self-healing control Voltage across 40 700 30 600 Fast, smart, 20 500 Current (kA) Resistance self-healing 10 400 switch 300 0 -10 -20 200 HTS 100 -30 0 -40 2 -100 25 35 55 65 85 95 5 15 45 75 0 Time (ms) Current Inner cryostat wall Liquid nitrogen coolant Copper shield wire HTS shield tape High voltage dielectric HTS tape Copper core Outer protective covering Thermal superinsulation Outer cryostat wall

SUPERCABLES

Supercables could transport energy in both electrical and chemical form. Electricity would travel meetry resistance-free through pipes (dark blue) made of a superconducting material. Childed hydrogen flowing as liquid (light blue) inside the conductors would keep finit temperature near absolute zero. A Supercable with two conduits, each about a meter in diameter, could simultaneously transmit five gigawatts of electricity and 10 gigawatts of thermal power (table).

Figure 10. The special chracteristics of supercables.

Smart Urbanization: Conclusions

Smart Urbanization will require planning supported by:

- Smart Grid technologies integrated through ICT
- Electrification of Transport
- ICT to enable mobility in dense urban environments
- Superconducting technologies for reliable transmission in dense urban cores

Equinox Energy 2030: Summary

- An energy 'ecosystem' view to approaching possible, low carbon technologies
- Potential pathways identified to help research, development and implementation of long-term solutions
- Technical details help convey the complexities, challenges and opportunities posed by a few transitional technological systems.

Paths to a Sustainable Life Quality

How do we manage the big risks?

Not to focus on regulations for helmets!

Waterloo Global Science Initiative
The Waterloo Institute for Sustainable Energy (WISE)

For follow up and contact information:

Jatin Nathwani, PhD, P.Eng. Professor and Ontario Research Chair in Public Policy for Sustainable Energy Executive Director, Waterloo Institute for Sustainable Energy Faculty of Engineering and Faculty of Environment 200 University Avenue West Waterloo, ON, Canada N2L 3G1

519 888 4567 ext 38252 nathwani@uwaterloo.ca cell: 416 735 6262

Waterloo Institute for Sustainable Energy 519 888 4618 www.wise.uwaterloo.ca