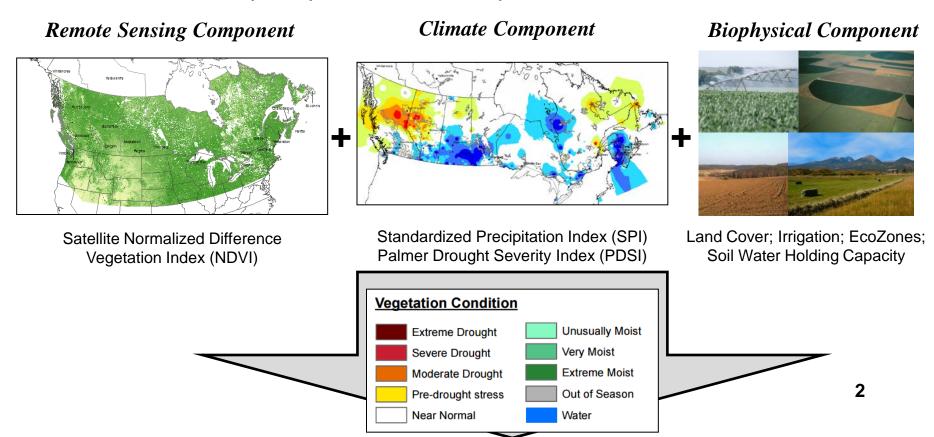
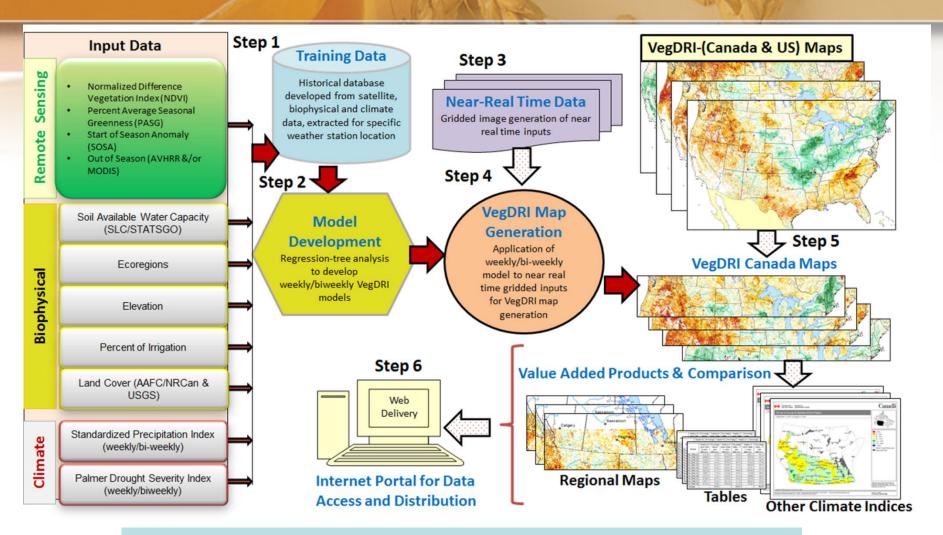


Trevor Hadwen

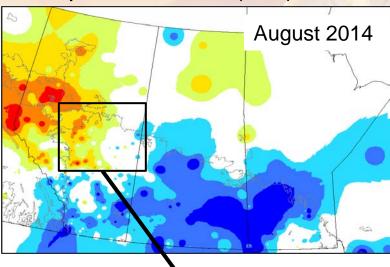

Agriculture and Agri-Food Canada National Agroclimate Information Service Regina, Saskatchewan, Canada

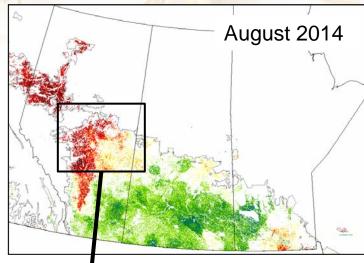
Improving the Effectiveness of Early Warning Systems for Drought: 2020 Virtual Drought Summit, October 1, 2020

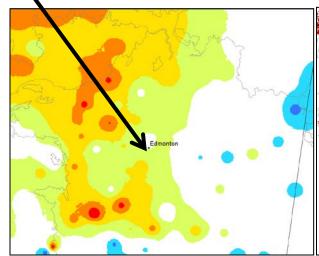


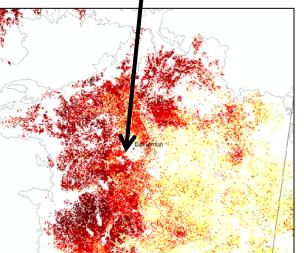
What is VegDRI?

- Hybrid drought index that combines satellite observations of vegetation health with climate station information and land biophysical information to determine drought categories.
- The index looks at anomalies in crop growth and builds a model that relates these to precipitation and temperature anomalies.

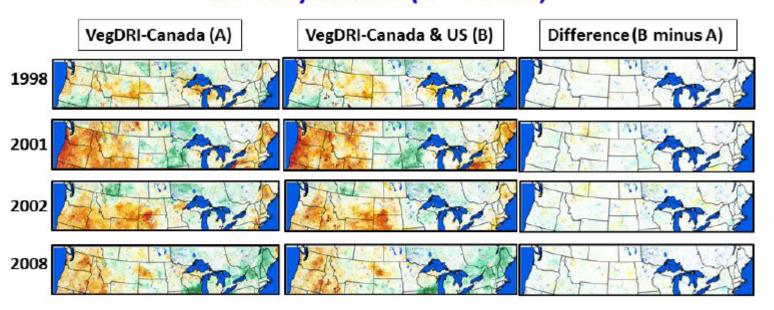

VegDRI Model Development (Tadesse et al 2015, 2017)...


Tadesse, T., Champagne, C., Wardlow, B.D., Hadwen, T.A., Brown, J.F., Demisse, G.B., Bayissa, Y.A., & Davidson, A.M. (2017). Building the vegetation drought response index for Canada (VegDRI-Canada) to monitor agricultural drought: first results. *GIS Science & Remote Sensing*, pp1-28.


VegDRI provides higher spatial resolution on the impacts of drought...


Interpolated Standardized Precipitation Index (SPI)

Vegetation Drought Response Index (VegDRI)



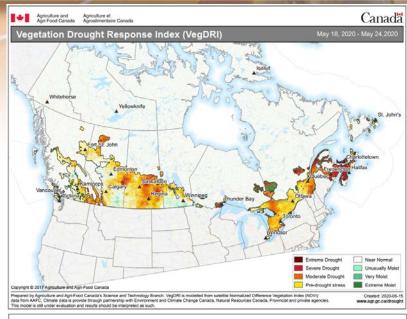
Impact of Data Inputs on VegDRI

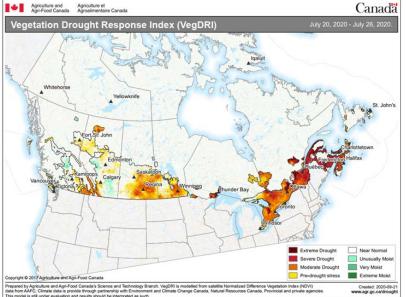
Difference Maps:

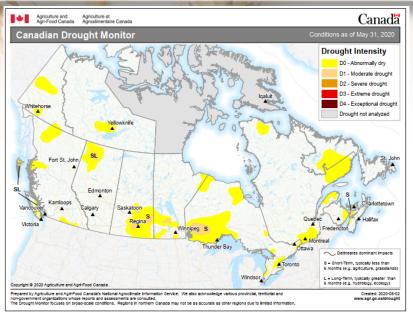
(VegDRI-US & Canada) minus VegDRI-Canada [B-A] for Early Season (4 – 18 Jun)

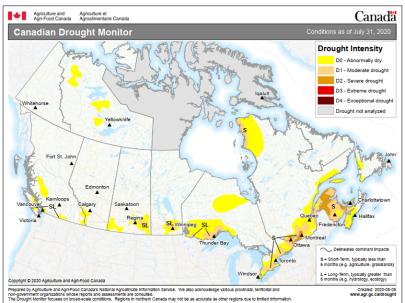
Average Over all Periods

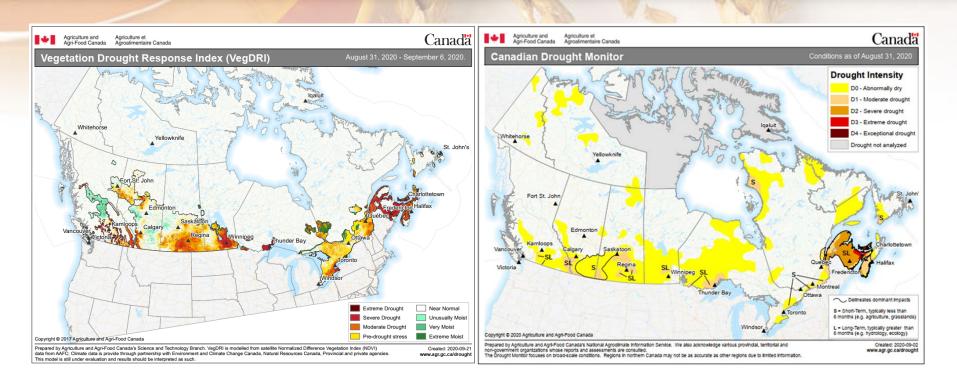
71% Pixels had no class difference

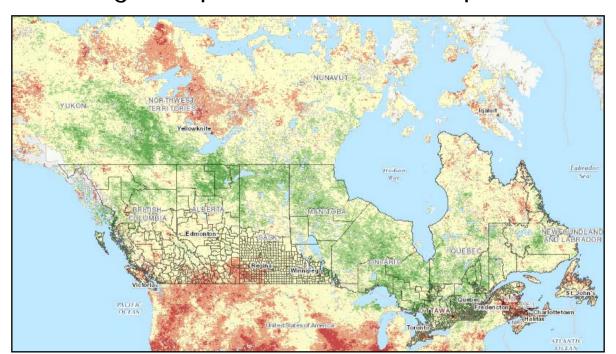

92% of pixels were within +/- 1 Class

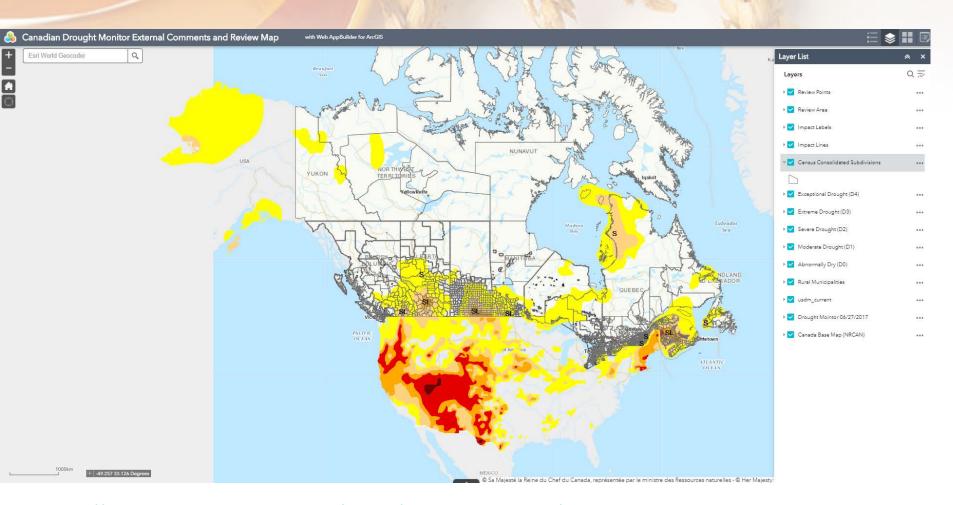

98% of pixels were within +/- 2 Class


Test results from the 2020 Canadian VegDRI Model


May 2020

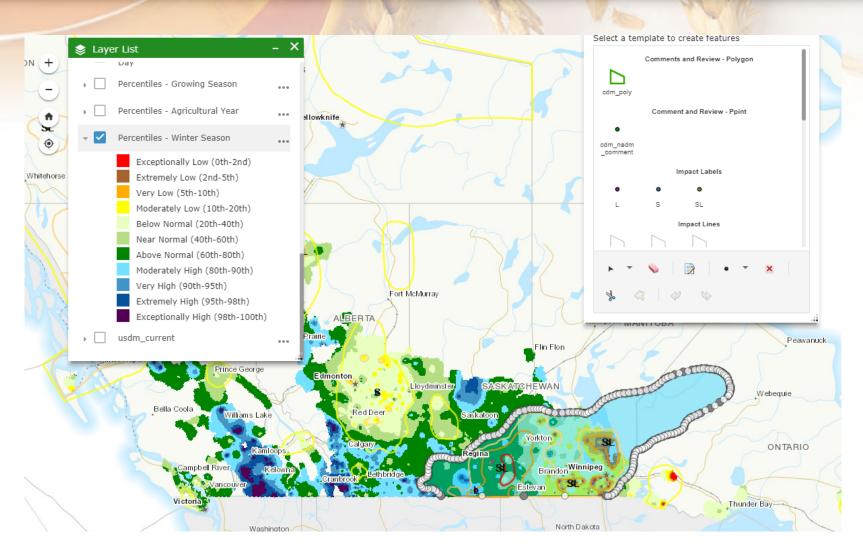



August 2020 VegDRI – CDM Comparison

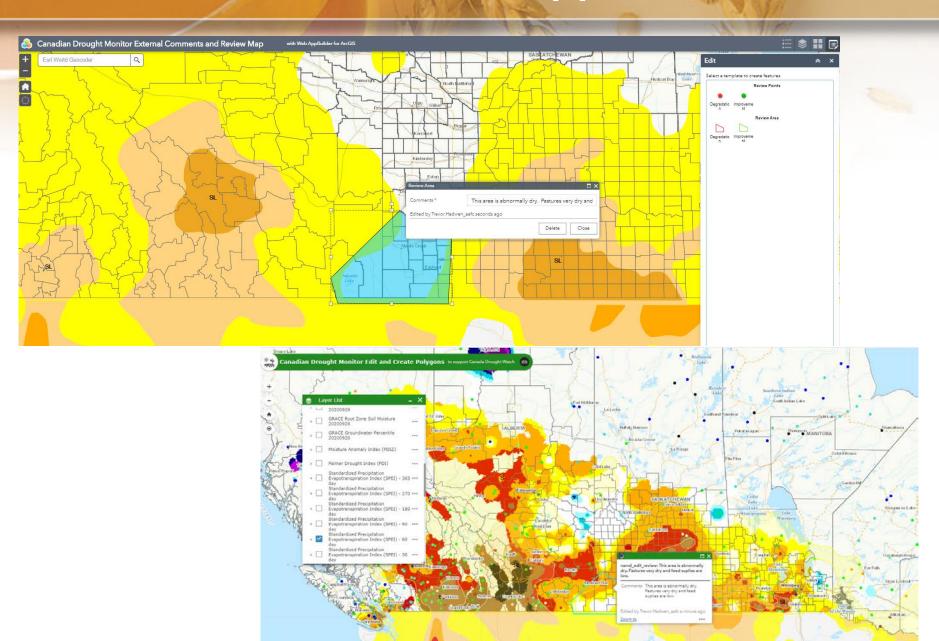

The Canadian VegDRI will be released and posted regularly on Drought Watch website www.agr.gc.ca/drought in 2021

The Evaporative Stress Index (ESI)

- The ESI describes temporal anomalies in ET, highlighting areas with high or low rates of water use.
- The ESI has the capability for capturing early signals of "flash drought", brought on by extended periods of hot, dry and windy conditions leading to rapid soil moisture depletion.



CDM Reviewer Application



http://aafc.maps.arcgis.com/apps/webappviewer/index.html?id=63e9d3dfe5bd45 5c9dfa58df8258b337

CDM Reviewer Application

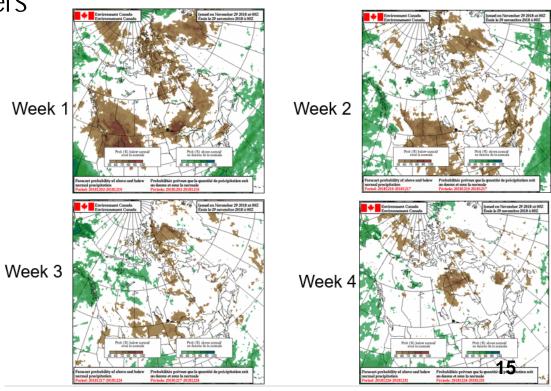
CDM Reviewer Application

Objective Blends and Drought Indices Table

- The goal of this project is to develop a Table that would provide a quick assessment of each indicator for each climate station in the country.
- The table would incorporate the indicators into short and long term objective blends
- The stations could then be displayed as a service on our CDM editor application or an application on our website.

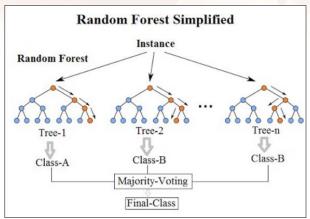
Objective Blends and Drought Indices Table

Veren Zoon. Lee (1861 X o		10111111	NAME	V 191	(Sec.)	38	1.0	Month	2 Month :	J Month :	# Sharek	(Ster)	2 Year	15m	Pani	PROE:	NPLM:	State :	- D
beer .	Cladic *	- NationED		34															
ide .	34	140	2030	ia .	10	14	34	(48	100	14	14	34	[4	(48	14	16	14	34	34
ic .	100	points	SCION LAKE DECKER LAKE	34.70	-125.94	75.00	501	8.760	1470	0.007	6.5311	6308	0.5086	0.1279	160	160	204	411	22.234
ic.	110	1100011	ABBOTHFORD	49.00	432.96	0.0	14.36	1360	16'06	6.586	0.3034	3.560	83041	0.4034	41	6	. 14	580	11.090
ec .	110	1190114	AGAINGE CV	44.77	435.77	624	19.30	8,9138	5.500	9,6739	9,0902	1.90	1379	9,090	47	34	101	362	11.112
ic.	110	1110024	TENT SOCCOUTER ACT	48.00	425.16	46.92	30.00	0.5925	0.4601	0.000	0.0038	8346	8.698	0.6804	381	110	110	410	8.005
к	110	(110616	SOUTH BOOK CAMBELL BODOTHIS	44.03	-412.79	44.81	1670	E 4819	2404	0,9006	0320	6.6139	8340	1.129	586	(17	201	40)	E346
ic.	-111	ameria :	PITT MEADOWS CI	40.0	-122.00	46.74	32.86	1.08	3.67	1612	0.204	540	9307	3.79	10	.00	165	767	18.90
KC .	110	120944	NASCOCYTE HARBOUR CS	49.5	-029.02	33.89	11.31	8302	64740	3.466	0.1004	63462	9,2967	9.792	-44	40	- 41	340	6.005
c.	110	110001	DELTA-9130/6/800	49.13	-428	8.0	10.68	8.4477	8.538	8,9423	8,127	8.5124	9.000	6.4002	11	- 11	17	274	- 6346
c	111	1111042	HOPE	44.0	-121.9	110	913	5,6446	1400	0.0040	0.0070	(300)	(1)	1.810	20)	790	794	917	20.00
e.	111	1114019	LELONET	20.46	421.99	57.3	391	0.6167	6.629	0.388	0.8031	0.3419	0.7968	895	335	350	365	419	625
0	111	3114746	LYTTON ACT.	99.22	-121.19	40.01	20,34	6.98	8.9844	8 8011	63778	0.2137	9.2009	6.010	341	112	.116	440	14294
c	112	112979	MERRITT	9.11	-326.78	60.27	8.86	0.5084	1.794	0.9012	5.00	9.472	1300	1100	545	1.798		478	10.00
c	112	1123030	KELOSYA	47.30	(218,78	28.1	4438	6477	8.700	1,9483	100	f.tet	0.034	0.903	50	720	128	407	10.10
c	112	1120/01	SCHOOLSTAND CH	49.30	-018.64	39.07	10.00	9,2715	8777	1 1917	0.1662	1,989	9.750	190	734	191	100	340	0.89
c	112	1126146	MIXILIAN	48.00	410 6	31,21	HI.28	8.2817	0.68	0.8112	9.6034	0.6888	0.3171	87769	411	441	418	218	34.00
C .	313	1129762	18000N ACTO	36.20	-219 (9	海井	86.11	8.2215	167	0.703	5 8471	8.1546	8.94%	1340	264	401	310	110	2829
c	112	HIPPOM	PROJECTION ES	0.0	1620 FE	\$3.36	44.78	0.2016	3 4945	8.788	6.7981	97500	8,9077	1.079	411	600	400	.111	832
10	112	HERRIT	GROSTOOS CS	46.0	-110.44	2831	97.96	6.9477	8501	0.012	0.014	8.9647	0.9654	0.7621	798	.79	146	234	143
ic .	110	1145387	XARDIFES	14.7	-117.00	42.77	73.79	8.3812	8.4007	0.6194	0.3088	9.7497	9.7981	0.3510	747	180	457	470	.14819
ю	114	1140/01	CRESTON CANDRELL	410	-100	3431	90.89	84278	1716	1310	+111	8 2947	81000	63677	++	-0	- 4	316	2010
MC .	114	1148700	nomination of	49.11	411.54	1.33	35.85	8,2862	0.5621	0.6049	0.1621	0.360	8.5027	0.260	46	40	.40	82	17.994
10	136	1147609	NELSON CE	4.0	-817.00	4.00		6340	62721	5 4545	1:0145	64579	107	0.000		- 1	- 1	- 11	25.316
10	111	111201	SPARROOD CS	49.3	-114.00	88.11	813	8.3074	3498	9.8123	0.0111	8.990	8.3412	1.4141	90	617	940	121	1974
ic.	117	1110101	CRUSTOOL	- 0.0	-03.78	131	18.62	8.000	8160	3307	0.046	8.022	0.000	0.2961	.0	70		46	0.73
KC.	119	119(71)	AUCROFT	20.71	411.28	m.12	40.XL	9.8845	8.6017	0.0110	0.941	1.944	9.8028	0.7890	739	111	710	794	17,919
10	116	116065	CLECTOVINCS	21.10	-828.99	-	50.00	0.8840	87729	8,8052	0.7025	0.6176	0.8052	0.7300	643	805	648	786	1727
KC .	118	219/3096	BUCK 80/50/.05	32.10	-319.29	7.0	44.23	8.7135	6.800)	6.7117	0.5084	6.4589	9,7042	8.1409	342	100	409	690	1.8
ic.	116	1160642	KALOON ACT	30.7	-0,20.64	66.78	61.60	0.0010	0.004	0.0164	8,504	5401	8.5525	8.7578	547	613	111	.123	31.500
ic .	116	DEPOS.	SALMON ARMORE	367	(119.29	11.62	57.36	0.460	0.665	0.039	0.7036	0.7610	1007	0.600	294	140	411	416	30.652


Drought Outlook

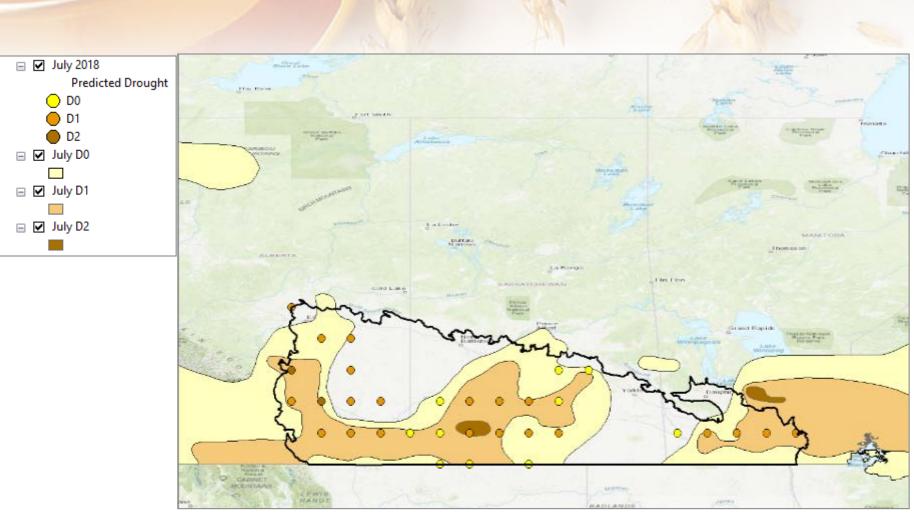
The high-level approach

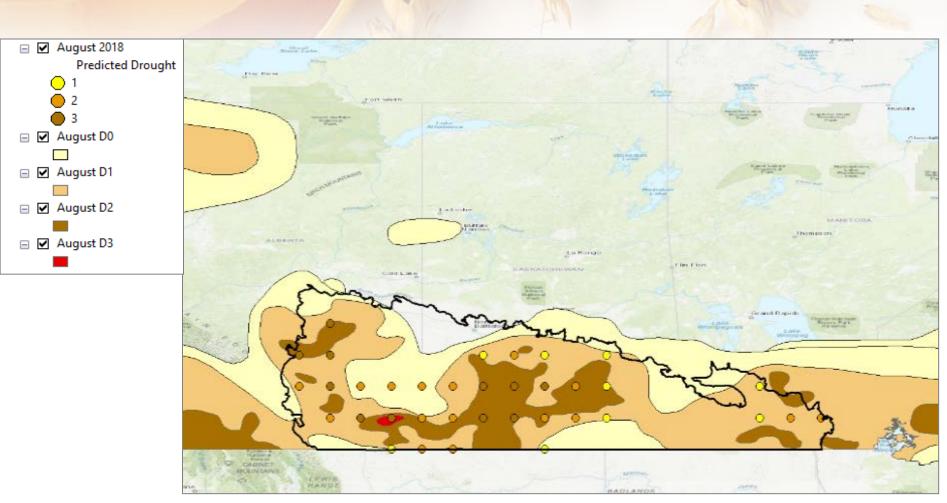
- Use existing forecasts from ECCC MSC (one month forecasts to start, then seasonal) to produce various drought indices.
- Create and automate a system to classify areas of intensity of drought based on the CDM classifications using a blend of the forecast indices.
- Develop output product(s) that show forecast conditions


Drought Outlook Data Sources

- GEPS Forecast (http://dd.weather.gc.ca/ensemble/geps/)
 - Forecasts in 3/6 hour steps to 16/32 days
 - Regularly spaced ~0.5 degree resolution
 - 21 ensemble members

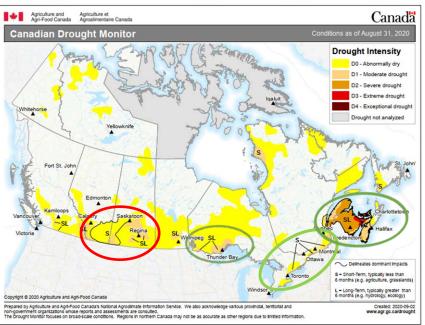
Drought Outlook


 "Forest" made of up of random partial decision trees

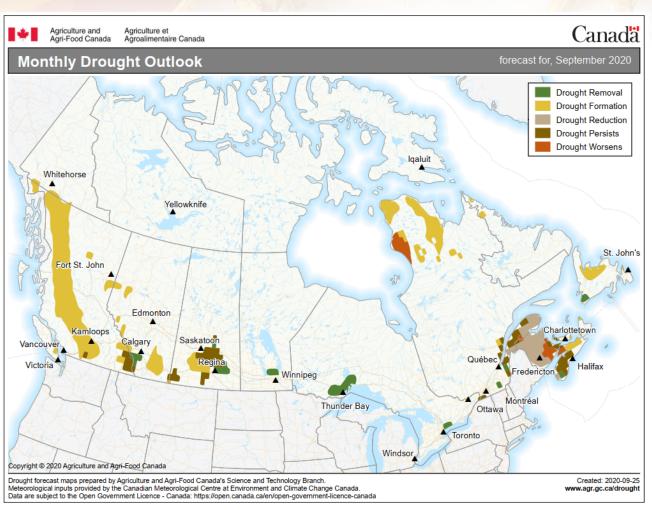

Trained machine learning algorithm

- Drought indices (2004-2015)
- Historical CDM (2004-2015)
- Auxiliary data (Ecozones map, month, etc)
- Uses all available information to classify drought
- Apply trained Machine Learning to predict drought
 - Forecasted drought indices created from GEPS data

Sample Results – July 2018


Sample Results – August 2018

Canadian Drought Outlook


August forecast compared with the August CDM assessment

Canadian Drought Outlook

September forecast

National Agroclimate information Service, Agriculture & Agri-Food Canada

Drought Watch

http://www.agr.gc.ca/drought