

Industrial Air Pollutants and Anti-Citrullinated Protein Antibodies Zhao N¹, Smargiassi A^{2,3}, Hatzopoulou M⁴, Colmegna I¹, Hudson M⁵, Fritzler MJ⁶, Awadalla P^{4,7}, **Bernatsky S¹**

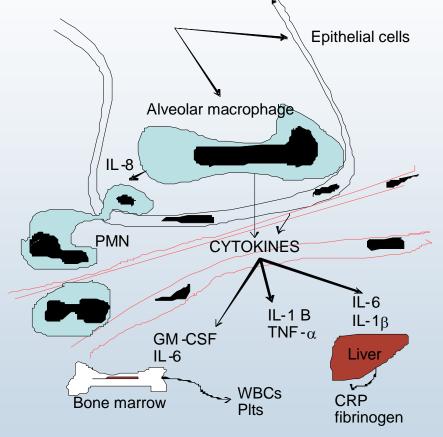
¹McGill University, Montreal, ²University of Montreal, ³Institut National de Santé Publique du Québec, ⁴University of Toronto, ⁵Lady Davis Institute for Medical Research, Montreal, ⁶University of Calgary, ⁷Ontario Institute for Cancer Research, Toronto

Rheumatoid arthritis

- Potentially devastating disease affecting almost 4 million North Americans (1%).
- May strike anyone, often affects people of work-force age.
 - Associated with high economic burden
 - mean direct medical costs >\$12,000 per patient per year
 - indirect costs averaging over \$21,000 per patient per year
 - thus economic burden related to RA >\$8 billion yearly
- Very poor understanding of RA pathogenesis a key knowledge gap.

Rheumatoid arthritis

- The immune system in RA is auto-reactive, begins producing antibodies to self-proteins (auto-antibodies), triggering inflammation.
- Inflammation targets joint tissue, causing joint swelling and pain, damage, and impaired function.



ACPA

- Anti-citrullinated protein antibodies (ACPA) are a characteristic finding in RA.
- These antibodies may occur in the absence of disease and may predate clinical manifestations of RA
- Lag time between antibody response and the first physical manifestations represents a possible 'window of opportunity' to intervene and induce remission (extremely difficult once symptoms become severe) or even prevent disease onset
- Identification of environmental triggers thus would have important public health implications

 $PM_{2.5}$ can trigger systemic inflammatory responses and oxidative stress, both linked to ACPA and RA

Adapted from van Eeden, Proc Am Prorac Soc 2005⁶⁹.

- Up-regulation of transcription factors (e.g. nuclear factor-κB), pro-inflammatory genes, chemokines (e.g. interleukin, IL-6 and γ-interferon, IFN) and reactive oxygen species (e.g. nitric oxide), which amplify systemic inflammation.
- A type of PM, diesel exhaust nanoparticles, has pro-inflammatory effects in scleroderma cells.
- NO₂ (and ozone) may also have a direct effect on inflammation via oxidative damage.

Air pollution as a trigger for RA

- Particulate air pollution associated with increased risk of juvenile arthritis (Zeft et al 2009)
- In the Nurses' Health Study, RA risk was higher for those residing within 50 m of a major road (Hart et al 2009); De Roos et al (2013) similar findings
- Chang et al. (2016) found association between RA and ambient NO2
- Associations between ambient PM_{2.5} and prevalence/ disease activity for systemic rheumatic diseases e.g. lupus (Bernatsky, 2011)
- No prior studies specifically of <u>industrial emissions</u> and rheumatic disease or antibodies

Methods

- CARTaGENE is part of the Canadian Partnership for Tomorrow Project, a population-health research platform to study genetics, behaviour, family health history, and environment in terms of health and disease.
 - Subjects in the CARTaGENE cohort were randomly selected from the provincial health insurance database (if they had resided \geq 5 years in Quebec), and invited to participate in the study.
 - Montreal, Quebec City, Sherbrooke, Saguenay–Lac- Saint-Jean
 - Basic socio-demographic factors (e.g. age, sex, French Canadian ancestry, and family income) and medical data including smoking habits are included in the baseline CARTaGENE data.
- > Serum ACPA was determined for 1,586 randomly selected subjects
- Biobanked serum samples assessed by immunoassay (Mitogen, Calgary)
 - Titer of 20 U/ml was the initial threshold of positive test; sensitivity analyses with higher thresholds

Methods

- Logistic regression; exposures based on subjects' baseline residential postal code
- Assessed <u>distance to</u> main industrial emitters of PM_{2.5} and SO₂ (separate models) using data from NPRI
 - As per Brand et al. (2016) 'main' emitters defined as any industry emitting over 100 tons of PM_{2.5} or SO₂ for at least 5 continuous years from 2002-2010
- Also assessed PM_{2.5} and SO₂ annual industrial emissions in tons (separate models)
 - Industrial emissions of PM_{2.5} and SO₂ in 2008 were summed for all industries (main emitters or not) within 2.5 km of each postal code.
- As per Leffondre et al. (2002) sensitivity analyses done to decompose exposure variables into two variables, one binary (1=exposed, 0=unexposed) and one continuous variable, centered to the mean exposure of those exposed.

Methods

- Also assessed regional PM_{2.5} levels estimated from satellite imagery, produced with the Moderate Resolution Imaging Spectroradiometer and multi-angle imaging spectroradiometer systems.
 - Images interpreted using the chemical transport model of atmospheric compositions (Goddard Earth Observing System, GEOS-Chem) to estimate regional PM_{2.5} levels with a geographic resolution of 10×10 km.
 - Estimates of long-term PM_{2.5} averages (2001–2006) have been developed based on aerosol optical-depth data from satellite instruments. van Donkelaar et al. (2010)
- All six digit postal codes located within a 10×10 km cell were given the same regional PM_{2.5} levels.
- Additional sensitivity analyses controlled for the four census metropolitan areas from which subjects had been recruited.

Results

Adjusted analyses suggested a positive association between annual industrial PM_{2.5} and SO₂ emissions and ACPA

- Data were also consistent with a negative association between the presence of ACPA, and distance to a major industrial emitter of both PM_{2.5} and SO₂.
- No clear association of ACPA with regional ambient PM_{2.5}

	PM _{2.5} distance	Adjusted OR (CI)
	PM _{2.5} per km	0.42 (0.23 , 0.76)
	PM _{2.5} binary	0.51 (0.14 , 1.86)
	Age (continuous)	1.00 (0.98 , 1.02)
	Female	1.06 (0.78 , 1.45)
	Smoker*	1.06 (0.71 , 1.59)
/	French Canadian	0.77 (0.56 , 1.07)
	SO ₂ distance	OR (CI)
	SO_2 per km	0.86 (0.74 , 1.00)
	SO ₂ binary	1.06 (0.77 , 1.47)
	Age (continuous)	1.00 (0.98 , 1.02)
	Female	1.06 (0.78 , 1.44)
	Smoker* *Smoking defined as current (vers	1.06 (0.71, 1.58)

	PM _{2.5} Emissions	Adjusted OR (95% CI)
	PM _{2.5} per 10 ton increase	1.02 (1.01 , 1.04)
	PM _{2.5} binary	1.01 (0.73 , 1.41)
	Age (continuous)	1.00 (0.98 , 1.02)
	Female	1.07 (0.78 , 1.45)
	Smoker**	1.05 (0.70 , 1.58)
	French Canadian	0.76 (0.55 , 1.05)
/	SO ₂ Emissions	Adjusted OR (CI)
	SO ₂ per 100 ton increase	1.02 (1.00 , 1.05)
	SO ₂ binary	1.08 (0.70 , 1.68)
	Age (continuous)	1.00 (0.98 , 1.02)
	Female	1.06 (0.78 , 1.45)
	Smoker*	1.06 (0.71 , 1.58)
	French Canadian	0.77 (0.56 , 1.06)

**Smoking defined as current (versus never or past) smoking

OR for ACPA, Regional Ambient PM_{2.5}

	Adjusted OR	95%	CI
Regional ambient PM2.5 (µg/m3)	0.97	0.92	1.03
Age	1.00	0.98	1.02
Female	0.98	0.71	1.35
Current Smoker	1.07	0.70	1.61
French Canadian	0.76	0.54	1.07

Recent updates

- Repeated analyses with larger sample (N=7,600)
- Industrial PM_{2.5}, SO₂, and NO₂ concentrations for 2005-2010, estimated by the California Puff (CALPUFF) atmospheric dispersion model, were assigned based on residential postal codes at the time of sera collection.
- Single-pollutant logistic regressions were performed for ACPA (20 U/ml, 40 U/ml, and 60 U/ml thresholds), adjusting for age, sex, French Canadian origin, smoking, and family income.
- Logistic regressions were also run for associations between ACPA and ambient PM_{2.5}
- Combined effects of all 3 industrial exposures were assessed by weighted quantile sum (WQS) regressions

Results

- Significant associations with ACPA positivity (at 20U/ml and 40U/ml thresholds) were seen in both single-exposure logistic and multi-exposure regression models, for industrial emissions of PM_{2.5} and SO₂. No clear associations for NO₂.
- At the 60 U/m threshold, results for both the single-exposure logistic and multi-exposure regressions were very imprecise.
- > In the multi-exposure regressions, industrial $PM_{2.5}$ was always most (and industrial NO₂ least) heavily weighted.
- > No clear association between ACPA and ambient $PM_{2.5}$

Discussion

- Industrial PM_{2.5} may be associated with ACPA.
- Does industrial emissions affect the immune system more than ambient PM_{2.5} ?
 - > Oxidative potential?
- Initial suggestion of industrial SO₂ in single-pollutant models not necessarily borne out in multi-pollutant models
- Mean industrial NO₂ levels in Quebec are relatively low, which may be why we failed to see associations between industrial NO₂ and ACPA?
- Cross sectional nature of our study was a limitation

Conclusions/Future directions

- We noted positive associations between ACPA and industrial emissions of PM_{2.5} and SO₂, but industrial PM_{2.5} exposure may play a more key role in this regard.
- No clear association for ACPA positivity and industrial NO₂ or ambient PM_{2.5} detected
 - Further studies will concurrently consider other environmental exposures (e.g. UV-B radiation, which is associated with lower RA risk).
- Correlations with epigenetic changes also planned

Funding

- CIHR catalyst grant
- Department of Defense, US Army Medical Research Acquisition Activity
- CIHR project grant

